

On the Structure-aware NLP and Beyond

Survey talk

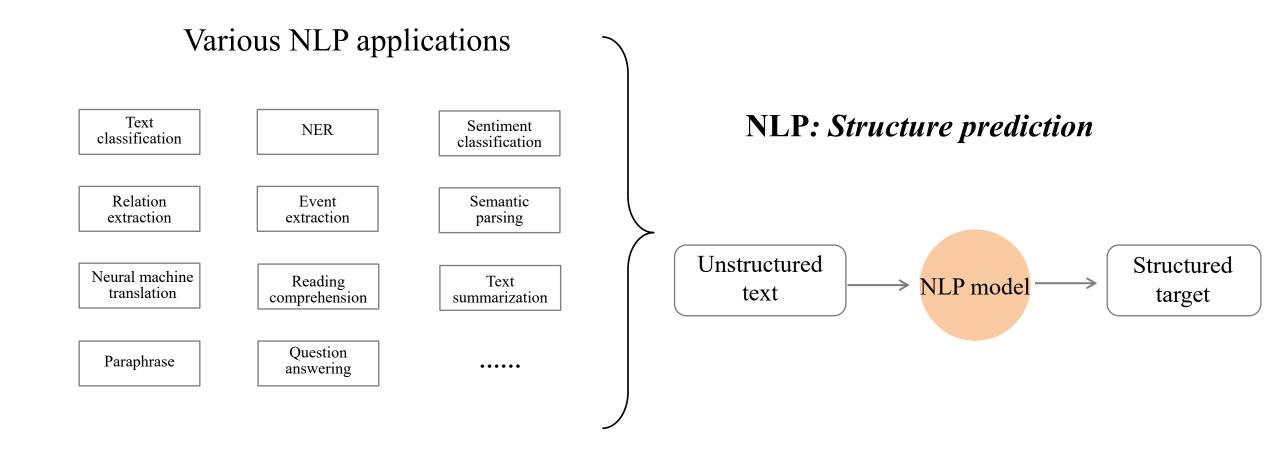
Hao Fei June 1, 2022

© Copyright NExT++. All Right Reserved.

OUTLINE

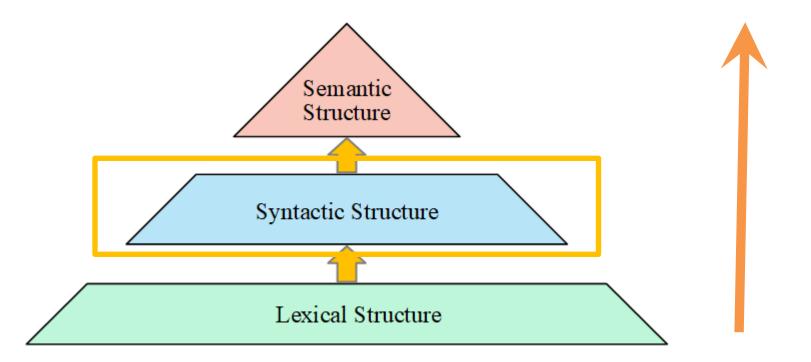
Structure-aware NLP

- WHAT is syntactic structure?
- WHY integrating structures for NLP?
- HOW to integrate?
- WHAT to do next?

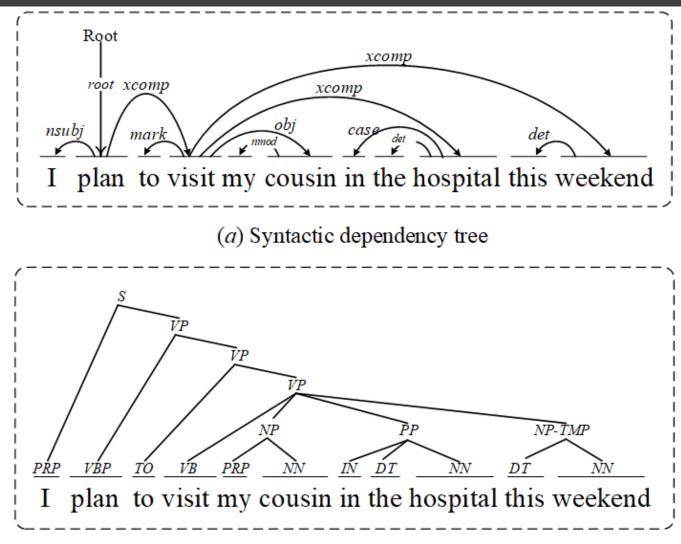

OUTLINE

Structure-aware NLP

- WHAT is syntactic structure?
- WHY integrating structures for NLP?
- HOW to integrate?
- WHAT to do next?

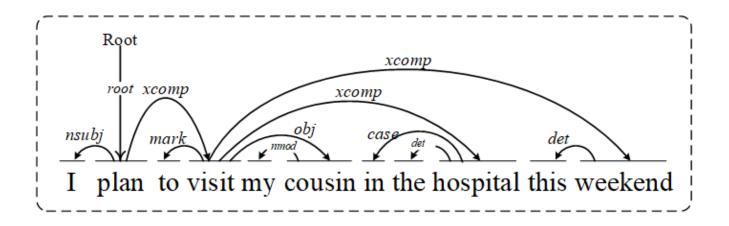


[Structure-aware NLP] What?


Natural language understanding in a Three-level Hierarchy

[Structure-aware NLP] What?

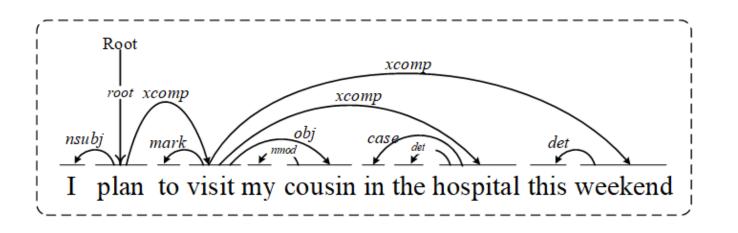
- Syntax structure
 - Syntactic dependency tree


• Syntactic constituency tree

(b) Syntactic constituency tree

- Syntax structure foundations
 - Syntactic dependency tree

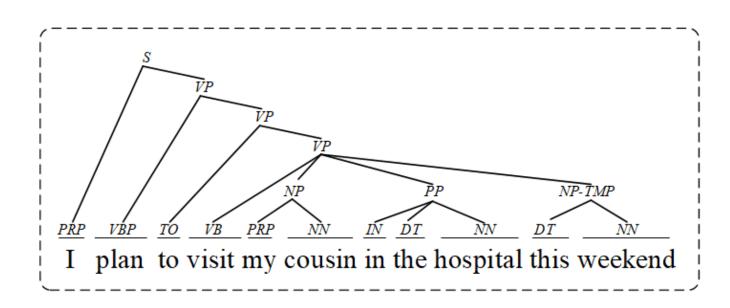
Describe the word-word relations in a `head->dependent' format with specific relation type (label).



Dep. Label	Description
amod	adjectival modifier
advcl	adverbial clause modifier
advmod	adverb modifier
acomp	adjectival complement
auxpass	passive auxiliary
compound	compound
ссотр	clausal complement
сс	coordination
conj	conjunct
сор	copula
det	determiner
dep	dependent
dobj	direct object
mark	marker
nsubj	nominal subject
nmod	nominal modifier
neg	negation modifier
xcomp	open clausal complement

- Syntax structure foundations
 - Syntactic dependency tree

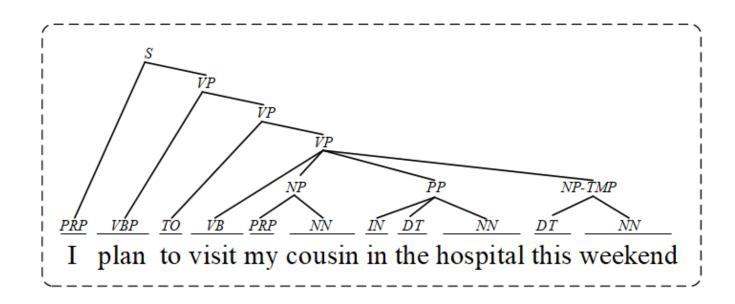
Describe the word-word relations in a `head->dependent' format with specific relation type (label).


Rules:

- A dependency tree has only one root with a "root" virtual node word;
- In a dependency tree, all nodes except the root node are virtual nodes, and all other nodes are entity words;
- Any node in a dependency tree except the root node has a unique parent node that is directly related to it;
- A directed acyclic graph composed of a dependency tree as a whole does not cross any dependency arcs.

- > Syntax structure foundations
 - Syntactic constituency tree

Reveal the *inclusive* and *constituent* relations between *phrases*.

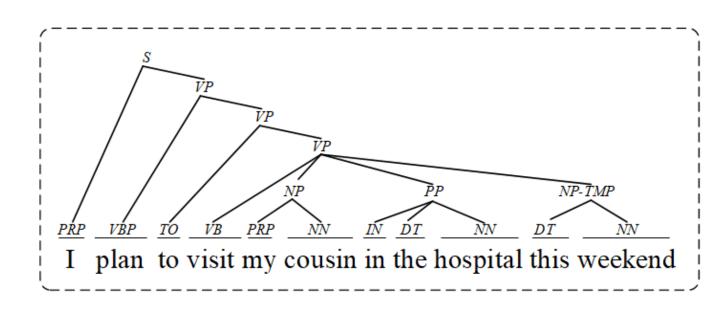


Const. Label	Description
ADJP	Adjective phrase
ADVP	Adverb phrase
NP	Noun phrase
PP	Prepositional phrase
S	Simple declarative clause
SBAR	Subordinate clause
SBARQ	Question introduced by wh-element
SINV	Declarative sentence
SQ	subconstituent of SBARQ
VP	Verb phrase
WHADVP	Wh-adverb phrase
WHNP	Wh-noun phrase
WHPP	Wh-prepositional phrase
X	Unknown or uncertain constituent

- Syntax structure foundations
 - Syntactic constituency tree

Reveal the *inclusive* and *constituent* relations between *phrases*.

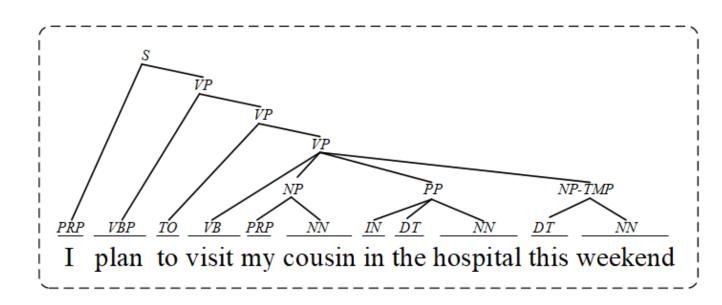
Rules: Context-free grammar (CFG)

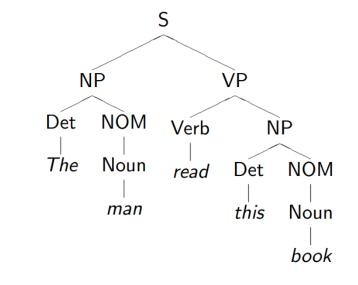

 $G = \langle T, N, S, R \rangle$

- T is set of terminals (lexicon)
- N is set of non-terminals For NLP, we usually distinguish out a set $P \subset N$ of *preterminals* which always rewrite as terminals.
- S is start symbol (one of the nonterminals)
- R is rules/productions of the form X → γ, where X is a nonterminal and γ is a sequence of terminals and nonterminals (may be empty).
- A grammar G generates a language L.

- > Syntax structure foundations
 - Syntactic constituency tree

Reveal the *inclusive* and *constituent* relations between *phrases*.


Rules: Context-free grammar (CFG)


$T = \{ that, this, a, the, man, book, flight, meal, include, read, does \}$					
$N = \{S, NP, NOM, VP, Det, Noun, Verb, Aux\}$					
S = S					
$R = \{$					
$\begin{array}{l} S \rightarrow NP \; VP \\ S \rightarrow Aux \; NP \; VP \\ S \rightarrow VP \\ NP \rightarrow Det \; NOM \\ NOM \rightarrow Noun \\ NOM \rightarrow Noun \\ NOM \rightarrow Noun \; NOM \\ VP \rightarrow Verb \\ VP \rightarrow Verb \\ VP \rightarrow Verb \; NP \end{array}$	Det \rightarrow that this a the Noun \rightarrow book flight meal man Verb \rightarrow book include read Aux \rightarrow does				

- > Syntax structure foundations
 - Syntactic constituency tree

Reveal the *inclusive* and *constituent* relations between *phrases*.

Rules: Context-free grammar (CFG)

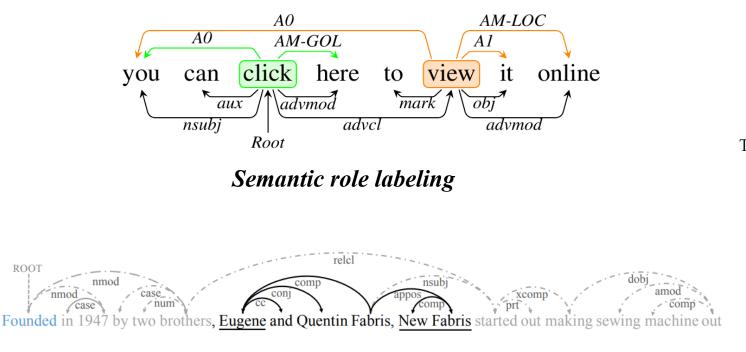
[Structure-aware NLP] What?

http://corenlp.run/

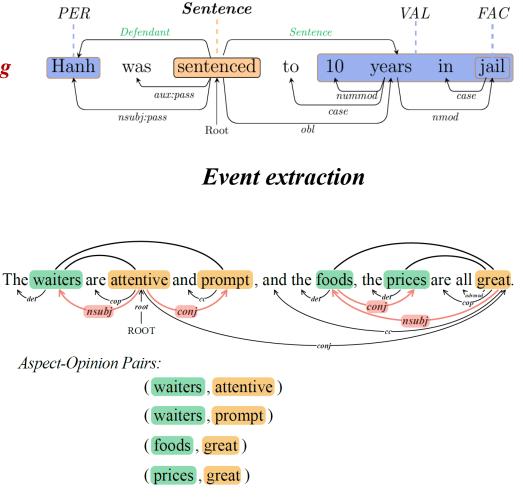
	version 4.4.0		
	— Text to annotate —		
I love the way			0
Annotatio	ons —	— Language —	//
dependency parse X constituency parse X		English •	Submit
	Constituency Parse:		
	ROOT S S VP VP VP VP VP VP VBP VBP VBP VBP VBP V		

© Copyright NExT++. All Right Reserved.

OUTLINE


Structure-aware NLP

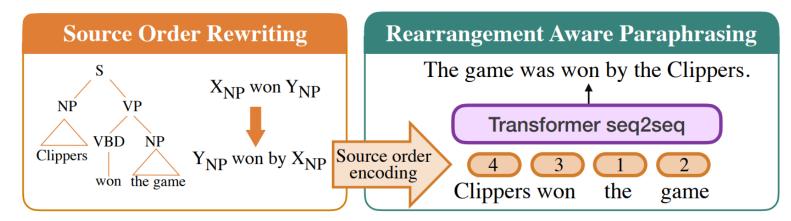
- WHAT is syntactic structure?
- WHY integrating structures for NLP?
- HOW to integrate?
- WHAT to do next?



> Aiding NLP with syntax structure

Syntax structure has intrinsically close relationship with semantics, so integrating syntactic structure as external features for improving downstream tasks.

Relation extraction

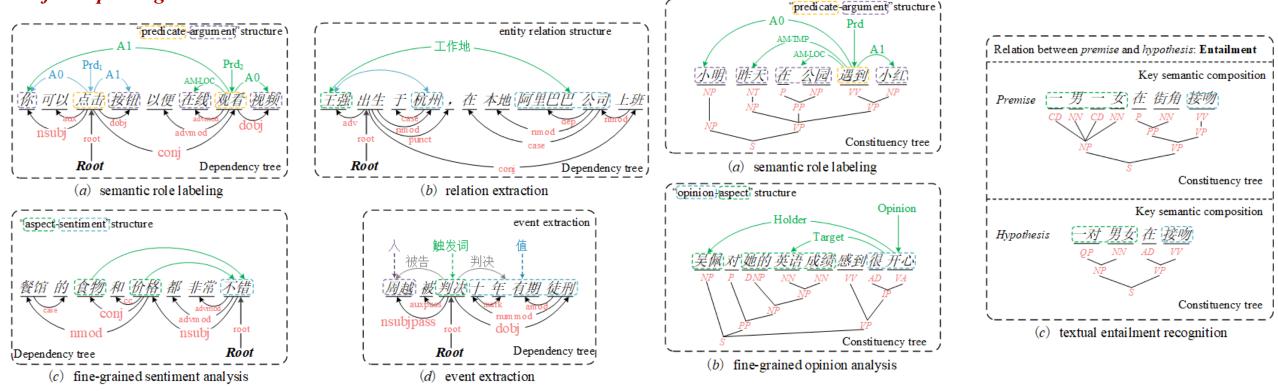

Aspect-opinion pair extraction

© Copyright NExT++. All Right Reserved.

> Aiding NLP with syntax structure

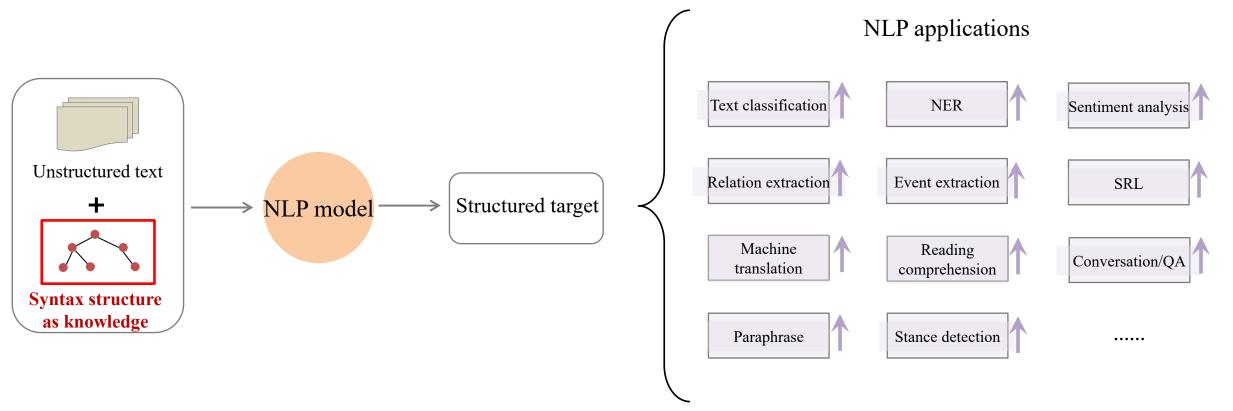

Syntax structure has intrinsically close relationship with semantics, so integrating syntactic structure as external features for improving downstream tasks.

Paraphrase generation



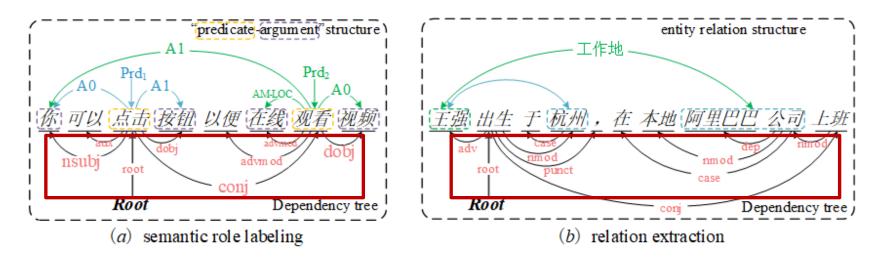
Neural machine translation

Aiding NLP with syntax structure


Syntax structure has intrinsically close relationship with semantics, so integrating syntactic structure as external features for improving downstream tasks.

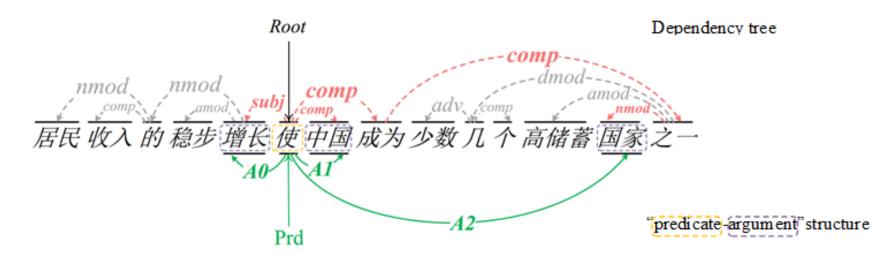
> Aiding NLP with syntax structure

Syntax structure has intrinsically close relationship with semantics, so integrating syntactic structure as external features for improving downstream tasks.



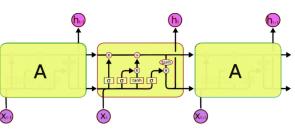
- > Aiding NLP with syntax structure
 - Enhancing downstream NLP task performances with additional features from low-level linguistic perspective.
 - Syntactic structural clues helps better task explainability.
 - Syntactic structures, as domain-/language-invariant features, brings up robust transfer learning.

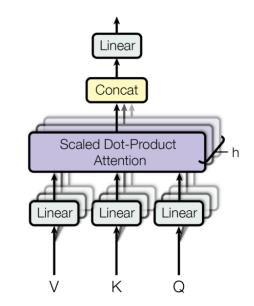
•

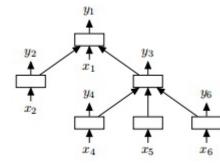

- Existing challenges
 - Insufficiency and under-optimization of syntax usage
 - Only using the **dependency arcs** between words in the dependency tree;
 - Without considering the use of the **syntactic labels** attached to the dependency arcs.

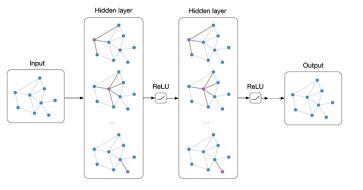
syntactic label information attached helps inference equally.

- Existing challenges
 - Insufficiency and under-optimization of syntax usage
 - Not all the entire information within syntactic trees provides positive help:

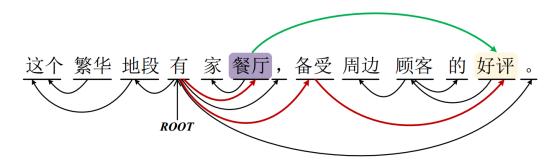



Colored structures: useful Gray structures: noise

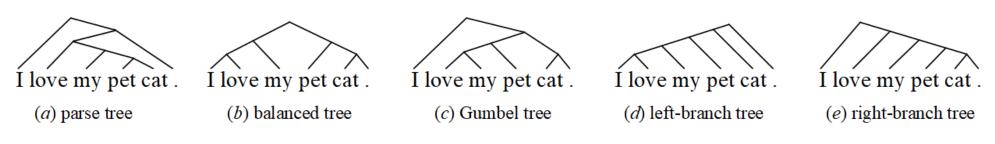

- Existing challenges
 - Shallow structure integration
 - Step1: Encoding syntax with encoders


1) sequential neural encoders, e.g., LSTM, Attention-based models,

2) hierarchical encoders, e.g., TreeLSTM, GCN models, etc.

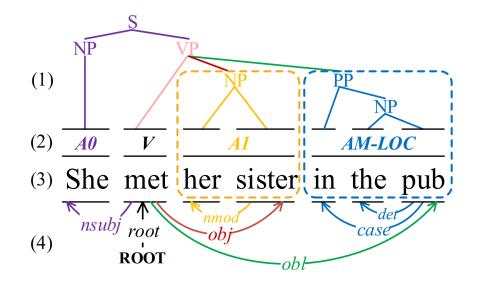

- Existing challenges
 - Insufficiently structure integration
 - Step2: *Concatenating* the syntax representation with word embedding as input feature representation.

where the problem come from


- 1) Flattening the hierarchy characteristic of the syntax structure.
- 2) Shallow interaction between syntactics and semantics.

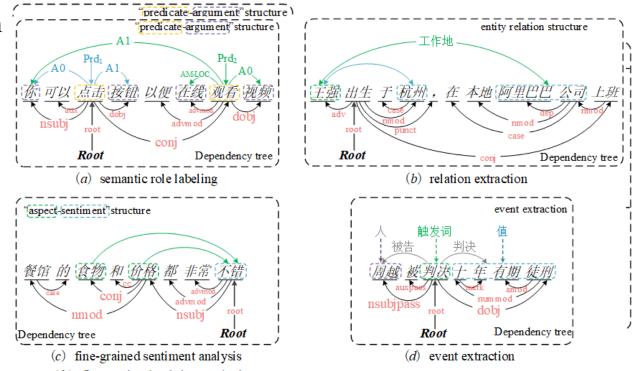
- Existing challenges
 - Fixed/rigid syntax structure
 - > Parsing syntax in fixed and rigid tree comes with task-irrelevant substructures, which would deteriorate the efficacy.

> Meanwhile, different NLP tasks rely on distinct bias of structural features.



- Existing challenges
 - Singleton type of syntax structure integration

1) Making use of only **one singleton syntax** information, i.e., the **dependency syntax**, or sometimes the **constituency tree**.


2) **Constituent** and **dependency** syntax depict the syntactic structure from different perspectives:

- Dependency structure depicts the inter-relations between words,
- > Constituency structure locates more about **span boundaries** of mentions.

- Existing challenges
 - Singleton type of syntax structure integration
 - Dependency structure depicts the inter-relations between words;
 - Constituency structure locates more about span boundaries of mentions.

(b) fine-grained opinion analysis

Simultaneously integrating these two heterogeneous representations can bring complementary advantages !

- Existing challenges
 - Unexploitation of syntax integration on varying scenarios beside sentence
 - Document-level tasks?
 - Multiple sentences, how to model the intrinsic document structure?

- ➤ Dialogue-level tasks?
 - Multiple separate utterances, how to model the overall structure?
 - Multiple speakers, entangled threads.
 - Speaker coreference issue.

OUTLINE

Structure-aware NLP

- WHAT is syntactic structure?
- WHY integrating structures for NLP?
- HOW to integrate?
- WHAT to do next?

- > **Preliminary-A**: Syntax structure parsers
 - Graph-based parser
 - Parsing task is regarded as the process of building a tree, searching a weighted graph to find the subgraph with the highest score that meets the grammar rules.

Pros:

Global-level feature modeling

Cons:

Iteratively enumerating, higher complexity

			ncubi	ROO	r obl				
	det		-nsubjd	root			-casede	t and the second s	
1	4	cat	is	sitting	g c	n	the	mat	
			deo	coding					
head	ROOT	А	cat	is	sitting	on	the	mat	
ROOT		0	70	0.1	0.8	0.2	0.1	0.3	
А	0.1	1	0.3	0.4	0.3	ð-	0.2	0.1	
cat	0.2	0.6		0.2	0.1	0.3	0.4	0.2	
is	0.4	Ø.2	0.4		0	0.1	Q	0.5	
sitting	0	0.5	0.7	0.8		0.5	0.2	0.6	
on	0.3	0	0.3	0	0.3		0.5	0.4	
the	0.4	0.1	0	0.2	0∢.	0.2		0.2	
mat	0.5	0.3	0.4	0.2	0.4	0.7	0.8		
biaffine				f(i	(,j)		;		
		-75							
bi-output features									
encoder		► _ -	► _ _						
input embedding		Ī	Ĭ	Ĭ	Ĭ	Ī	Ī		
	ROOT	А	cat	is	sitting	on	the	mat	

- > Preliminary-A: Syntax structure parsers
 - Transition-based parser
 - > The process of a finite state automata.
 - Transition process from initial state to terminal state.
 - The transition framework consists of two core elements: Action and State.

Pros:

Linear decoding, lower complexity

Cons:

Local-level feature modeling

_			
	Stack:	Buffer:	Partial trees E:
Step i:	root A cat	is sitting on the mat	Φ
al			
	Stack:	Buffer:	
Step i+1:	root cat	is sitting on the mat	$E \cup \det\left(ext{cat}, ext{A} ight)$
ts of two core Shift	A		
	Stack:	Buffer:	
Step i+2:	root cat is	sitting on the mat	

> **Preliminary-A**: Syntax structure parsers

Transition steps ٠

	Sentence : He ₁ says ₂ the ₃ agency ₄ seriously ₅ needs ₆ money ₇ to ₈ develop ₉								
Step	Action	σ^{o}	α^{o}	λ	σ^r	α^r	β	Ptr	Y
0	-	[]	[]	Null	[]	[]	[1,,9]		
1	R-START	0	[]	$(1,1)^r$	[]	[]	[<u>1</u> ,···,9]	[<u>1</u> ,· · · ,9]	
2	SHIFT	0	[]	Null	[(1,1)]	[]	[2,,9]		
3	O-START	0	[]	$(2,2)^{o}$	[(1,1)]	[]	[<u>2</u> ,···,9]	[<u>2</u> ,· · · ,9]	
4	ARC		[]	$(2,2)^{o}$	[]	[(1,1)]	[2,,9]		$Y \cup \{\langle (2,2)^o, (1,1)^r(hd) \rangle\}$
5	SHIFT	[(2,2)]	[]	Null	[(1,1)]	[]	[3,,9]		
6	R-START	[(2,2)]	[]	$(3,4)^r$	[(1,1)]	[]	[<u>3</u> ,···,9]	[3, <u>4</u> ,···,9]	
7	ARC		[(2,2)]	$(3,4)^r$	[(1,1)]	[]	[3,,9]		$Y \cup \{\langle (2,2)^o, (3,4)^r(tg) \rangle\}$
8	SHIFT	[(2,2)]	[]	Null	[(1,1),(3,4)]	[]	[4,,9]		
9	NO-START	[(2,2)]	[]	Null	[(1,1),(3,4)]	[]	[5,,9]		
10	O-START	[(2,2)]	[]	(5,6) ^o	[(1,1),(3,4)]	[]	[<u>5</u> ,···,9]	[5, <u>6</u> ,···,9]	
11	ARC	[(2,2)]	[]	(5,6) ^o	[(1,1)]	[(3,4]	[5,,9]		$Y \cup \{\langle (5,6)^o, (3,4)^r(hd) \rangle\}$
12	NO-ARC	[(2,2)]	[]	(5,6) ^o	[]	[(1,1),(3,4]	[5,,9]		
13	SHIFT	[(2,2),(5,6)]	[]	Null	[(1,1),(3,4]	[]	[6,,9]		
14	NO-START	[(2,2),(5,6)]	[]	Null	[(1,1),(3,4]	[]	[7,8,9]		
15	R-START	[(2,2),(5,6)]	[]	$(7,9)^r$	[(1,1),(3,4]		[7,8,9]	[7,8, <u>9]</u>	
16	ARC	[(2,2)]	[(5,6)]	$(7,9)^r$	[(1,1),(3,4]	[]	[7,8,9]		$Y \cup \{\langle (5,6)^o, (7,9)^r(tg) \rangle\}$
17	NO-ARC	0	[(2,2),(5,6)]	$(7,9)^r$	[(1,1),(3,4]	[]	[7,8,9]		
18	SHIFT	[(2,2),(5,6)]	[]	Null	[(1,1),(3,4,(7,9)]	[]	[8,9]		
19	NO-START	[(2,2),(5,6)]	[]	Null	[(1,1),(3,4,((7,9)]		[9]		
20	NO-START	[(2,2),(5,6)]	[]	Null	[(1,1),(3,4,(7,9)]	[]	[]		

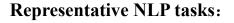
Sentence: He says the agency seriously needs money to develop

© Copyright NExT++. All F

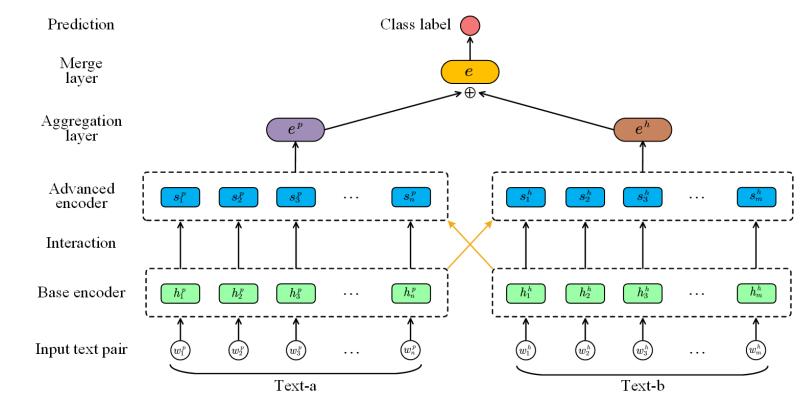
- > Preliminary-A: Syntax structure parsers
 - Graph-based parser
 - Transition-based parser
 - Table-filling extractor
 - PointerNet extractor
 - MRC extractor
 - Hypergraph extractor
 - • • • •

Structure parser: Complex information extraction

- > Nested NER
- Discontinuous NER
- > Overlapped RE
- ➤ Overlapped EE


Preliminary-B: Complete modeling of NLP tasks

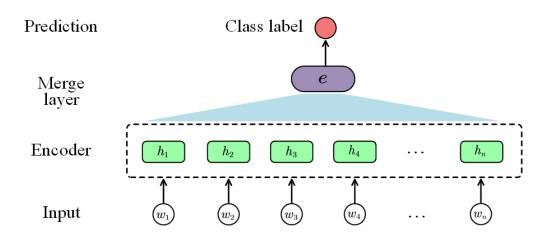
(almost) All NLP tasks


- Text-pair classification
- Text classification
- Span classification
- Word/token classification
 - Input-output synchronized classification
 - Input-output asynchronized classification

- > **Preliminary-B**: Complete modeling of NLP tasks
 - Text-pair classification

- 1. Recognition of Text Entailment (RTE)
- 2. Natural language inference
- 3. Paraphrase Identification

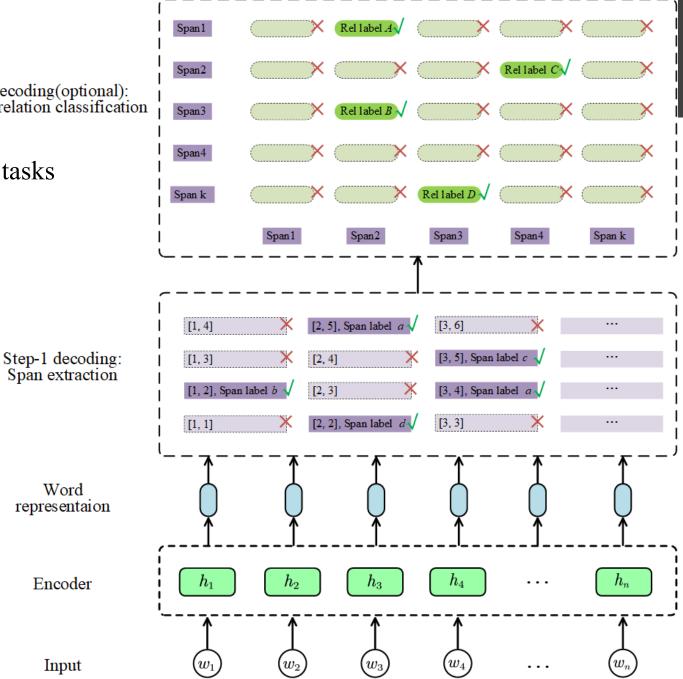
...



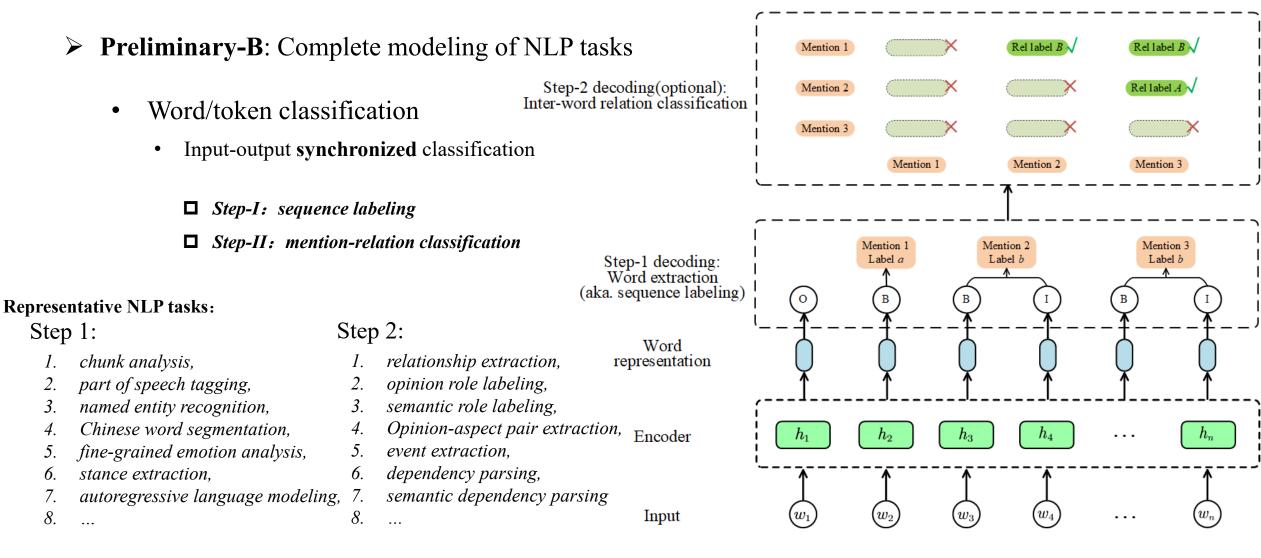
Preliminary-B: Complete modeling of NLP tasks

• Text classification

- 1. Relation classification
- 2. Topic classification
- 3. Sentiment classification
- 4. Question type classification
- 5. Intention classification
- 6. Emotion classification
- 7. Aggressive language classification
- 8. ...



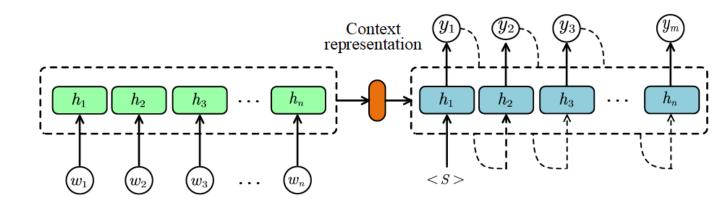

Step-2 decoding(optional): Inter-span relation classification


- > **Preliminary-B**: Complete modeling of NLP tasks
 - Span classification •
 - **Step-I:** span extraction
 - Step-II: span-relation classification

Representative NLP tasks:

- Machine reading comprehension
- 2. Extractive automatic summarization
- Nested NER 3.
- *Constituency parsing* 4.
- Nested RE 5.
- Coreference/anaphora resolution 6.
- 7. ...

> **Preliminary-B**: Complete modeling of NLP tasks

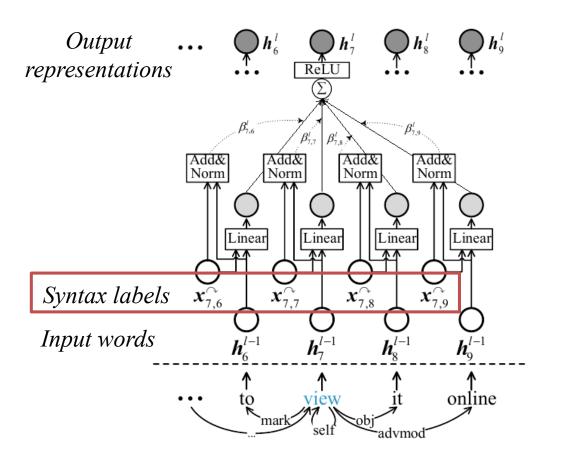

- Word/token classification
 - Input-output asynchronized classification

Aka.

- Sequence-to-Sequence framework
- Encoder-Decoder framework
- *End-to-end framework*

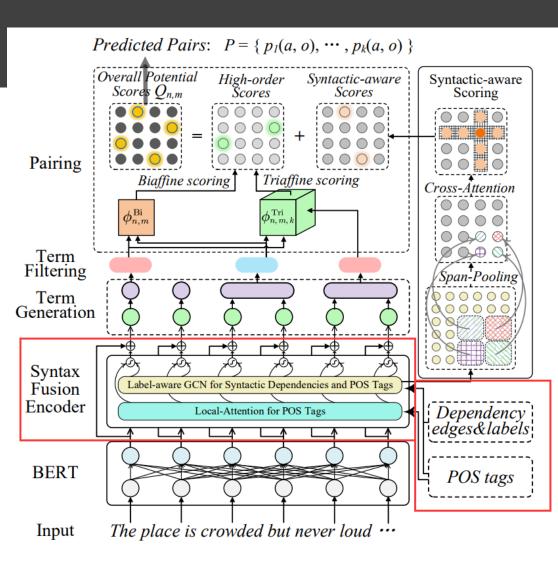
Representative NLP tasks:

- 1. Neural machine translation,
- 2. automatic summarization,
- 3. dialogue system,
- 4. autoregressive language modeling
- 5. ...



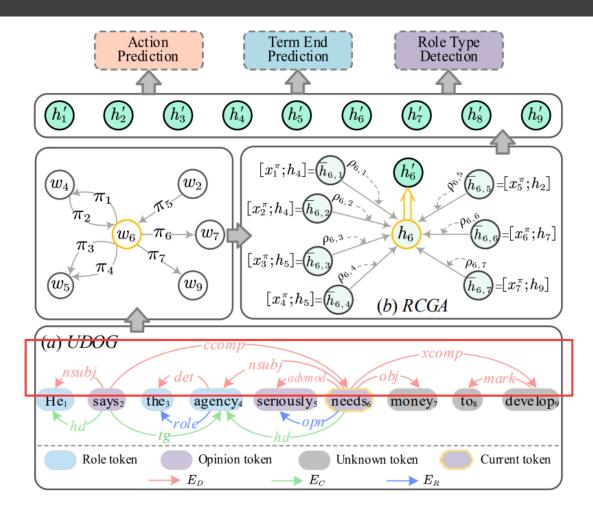
Decoder

- ➤ Case-I: Making use of the syntax label feature
 - Label-aware GCN
 - GCN backbone
 - Simultaneously encoding the syntax label representations



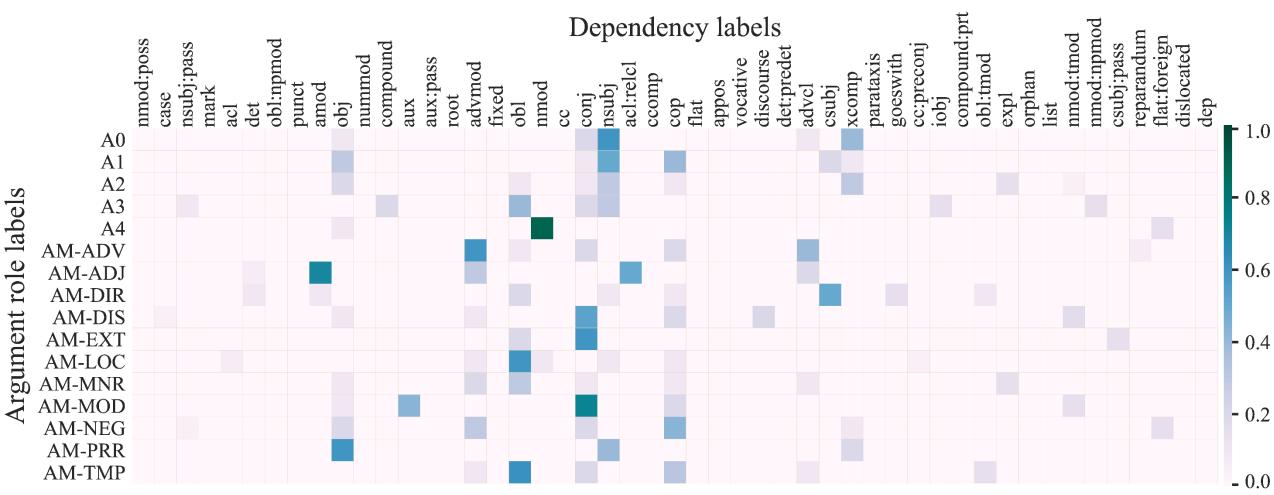
[1] Hao Fei, Fei Li, Bobo Li, Donghong Ji. Encoder-Decoder Based Unified Semantic Role Labeling with Label-Aware Syntax. AAAI. 2021.

- ➤ Case-I: Making use of the syntax label feature
 - Syntax GCN
 - GCN backbone
 - Encoding:

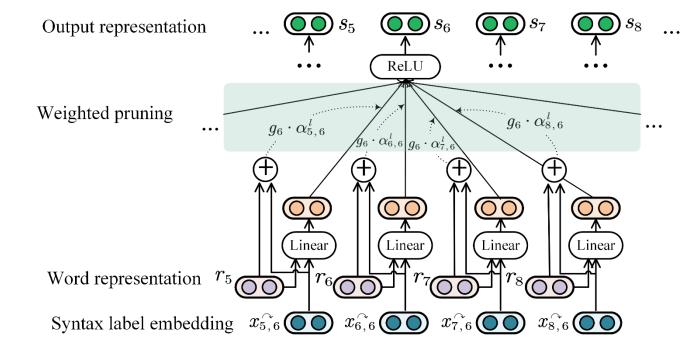

the dependency edges and
 syntax labels
 POS tags

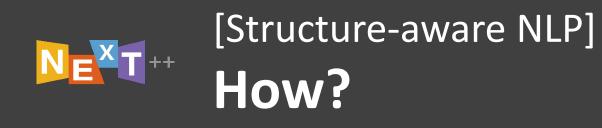
[1] Shengqiong Wu, Hao Fei, Yafeng Ren, Donghong Ji, Jingye Li. Learn from Syntax: Improving Pair-wise Aspect and Opinion Terms Extraction with Rich Syntactic Knowledge. IJCAI. 2021.

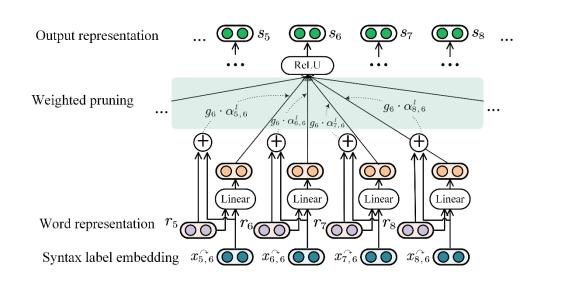
- ➤ Case-I: Making use of the syntax label feature
 - Dependency-aid relation-centered graph aggregator
 - Graph with multi-relational edges
 - Using dependency trees for high-order feature aggregation



[1] Shengqiong Wu, Hao Fei, Fei Li, Meishan Zhang, etc. Mastering the Explicit Opinion-role Interaction: Syntax-aided Neural Transition System for Unified Opinion Role Labeling. AAAI. 2022.


Case-I: Making use of the syntax label feature


Syntax labels helps produce explainable results



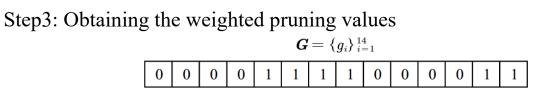
- Case-II: Dynamic structure pruning
 - Dynamic structure pruning mechanism
 - Based on Label-aware syntax GCN
 - Performing structure pruning

- Case-II: Dynamic structure pruning
 - Dynamic structure pruning mechanism

Pruning gating prob Pruning gating prob Neighbor context representation Local Attention Node Node

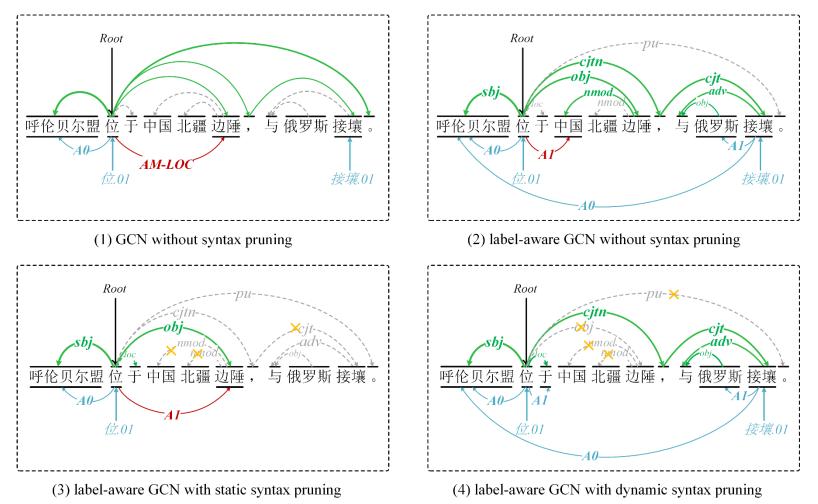
Step1: Generating pruning gating prob based on local attention module

Step2: Performing discrete transformation on the gating prob via Gumbel-Softmax


rad

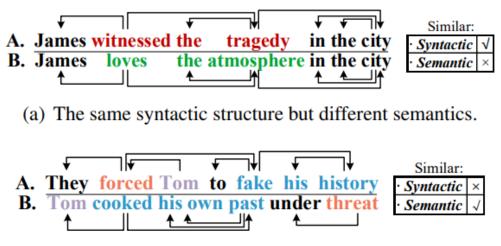
representation

$$g_i = \frac{\exp\left(\log p_{i,1} + \epsilon\right)/\tau}{\sum_{t=0,1} \exp\left(\log p_{i,t} + \epsilon\right)/\tau},$$


. . .

 $\operatorname{Gumbel}(0,1) = -\log(-\log(\operatorname{Uniform}(0,1))),$

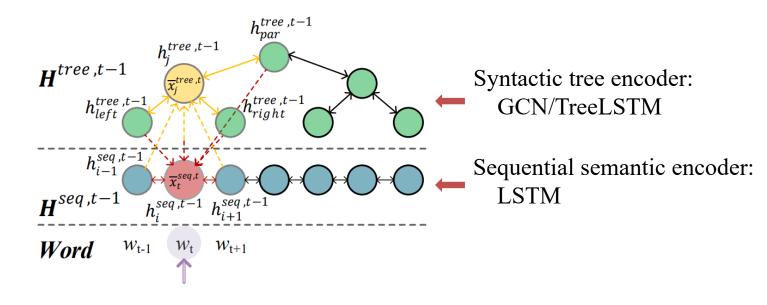
Case-II: Dynamic structure pruning



Dynamic structure pruning helps denoising

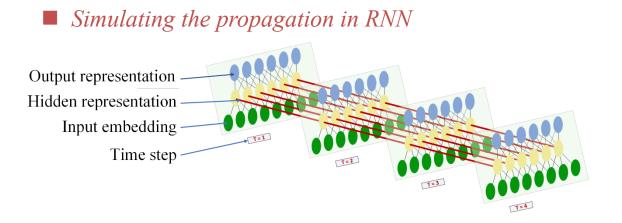
© Copyright NExT++. All Right Reserved.

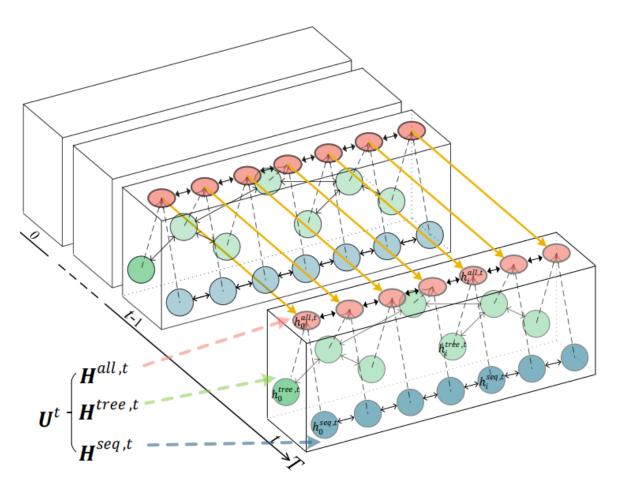
- Case-III: Deep Syntax-Semantics Communication
 - Gaps between the syntax and semantics


(b) The similar semantics but different syntactic structures.

Insufficient interactions between syntax and semantics!

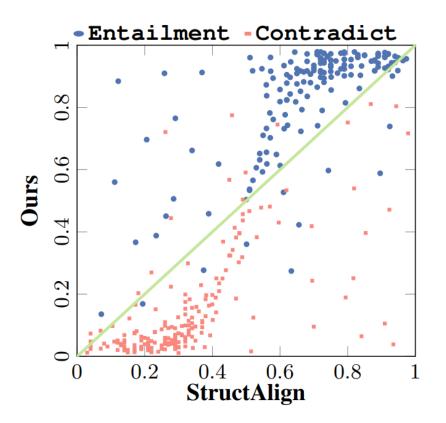
[1] Hao Fei, Yafeng Ren, Donghong Ji. Improving Text Understanding via Deep Syntax-Semantics Communication. EMNLP (Findings) 2020: 84-93

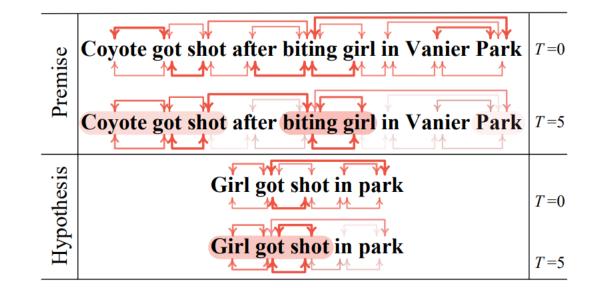

- Case-III: Deep Syntax-Semantics Communication
 - Local communication
 - between <u>syntactic tree encoder</u> and <u>sequential semantic encoder</u>.



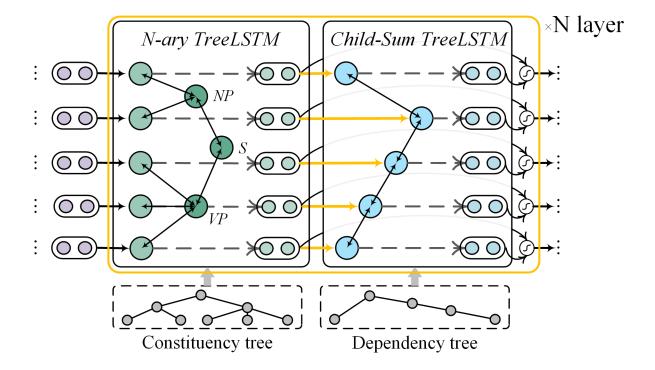
Case-III: Deep Syntax-Semantics Communication

- Global interaction
 - ➤ at the sentence level over <u>recurrent steps</u>.

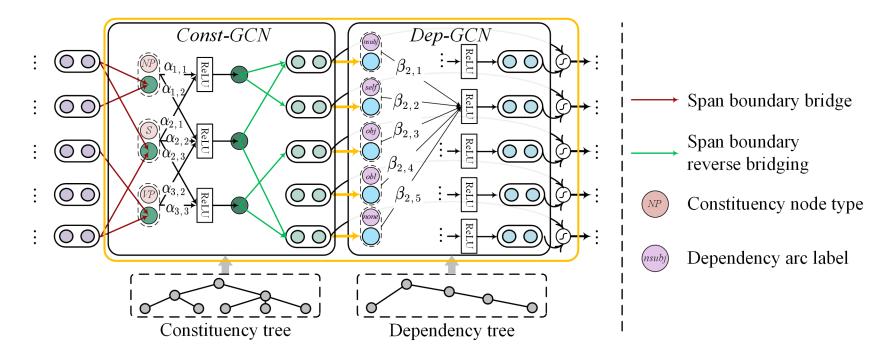




Case-III: Deep Syntax-Semantics Communication

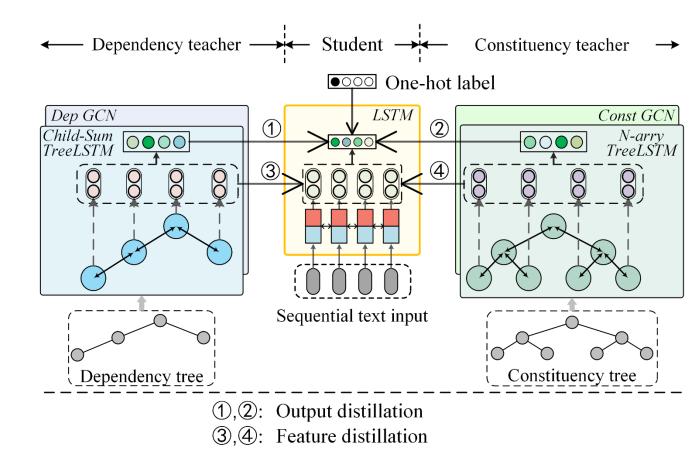

More precise on capturing text semantics

- Case-IV: Heterogeneous syntax integration
 - Explicit heterogeneous syntax fusion
 - TreeLSTM-based fuser

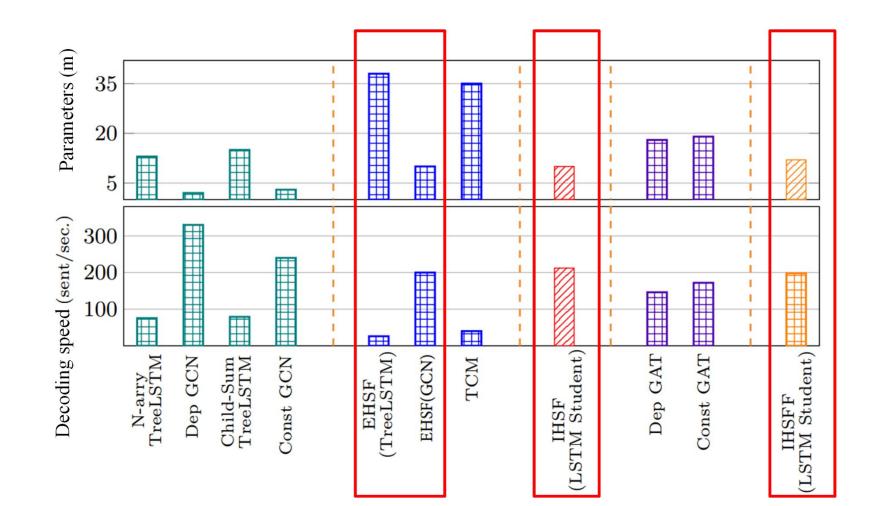


[1] Hao Fei, Shengqiong Wu, Yafeng Ren, Fei Li, Donghong Ji. Better Combine Them Together! Integrating Syntactic Constituency and Dependency Representations for Semantic Role Labeling. ACL/IJCNLP (Findings) 2021: 549-559

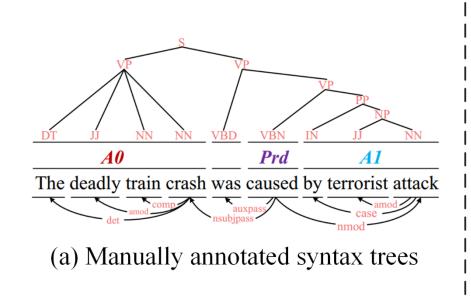
© Copyright NExT++. All Right Reserved.

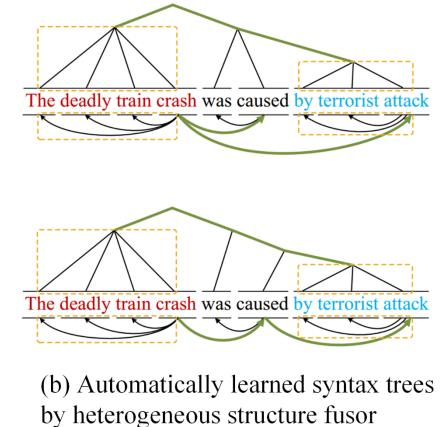


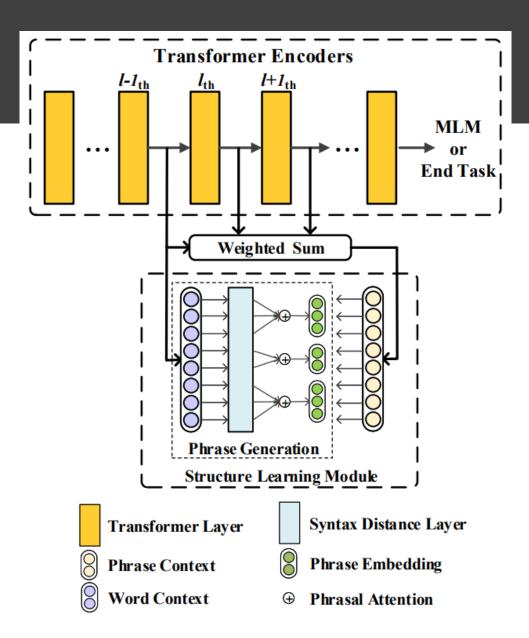
- Case-IV: Heterogeneous syntax integration
 - Explicit heterogeneous syntax fusion
 - SyntaxGCN-based fuser

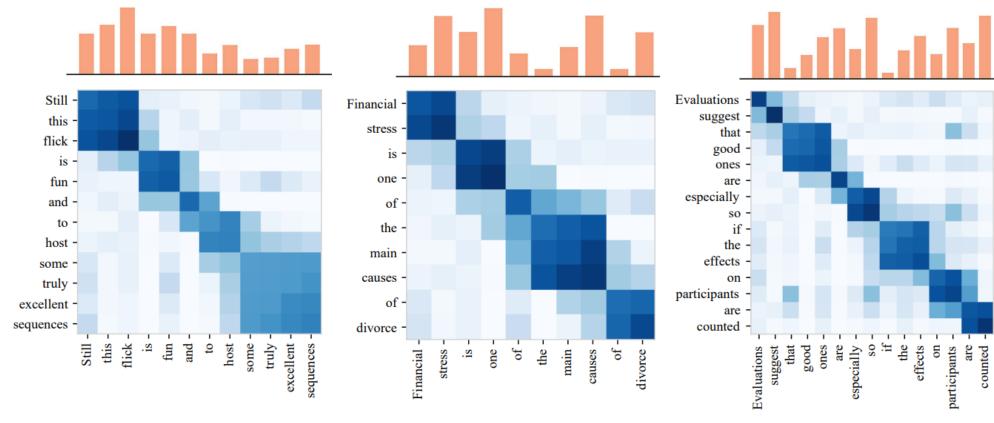

- Case-IV: Heterogeneous syntax integration
 - Implicit heterogeneous syntax fusion
- Syntax teacher models
 - Dependency tree:
 - Syntax GCN
 - Child-sum TreeLSTM
 - Constituency tree:
 - Syntax GCN
 - N-arry TreeLSTM
- > Student model
 - Simply sequential LSTM: linear complexity, faster, lower parameters.

[1] Hao Fei, Yafeng Ren, Donghong Ji. Mimic and Conquer: Heterogeneous Tree Structure Distillation for Syntactic NLP. EMNLP (Findings) 2020: 183-193




- Case-IV: Heterogeneous syntax integration
 - Efficiency study

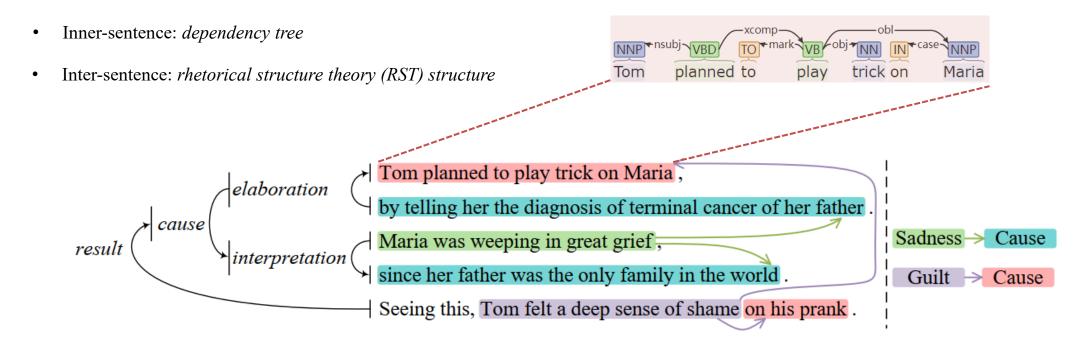

- Case-IV: Heterogeneous syntax integration
 - Visualization


- Case-V: Syntax integration in LMs
 - Structure-aware Transformer LM
 - Integrating heterogeneous syntax
 - Middle-layer syntax-enhanced training strategy
 - Structure-aware fine-tuning with end-task

[1] Hao Fei, Yafeng Ren, Donghong Ji. Retrofitting Structure-aware Transformer Language Model for End Tasks. EMNLP. 2020: 2151-2161

- Case-V: Syntax integration in LMs
 - Visualization of attention maps of different tasks

(a) SST


(b) Rel

(c) SRL

Case-VI: Modeling discourse structure for document-level NLP

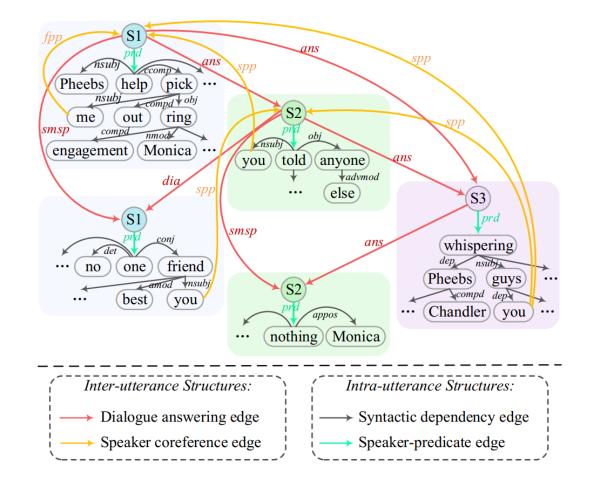
• Complete document-level dependency structure

[1] Hao Fei, etc. Transition-based End-to-end Emotion-Cause Pair Extraction with Implicit Discourse Knowledge. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022.

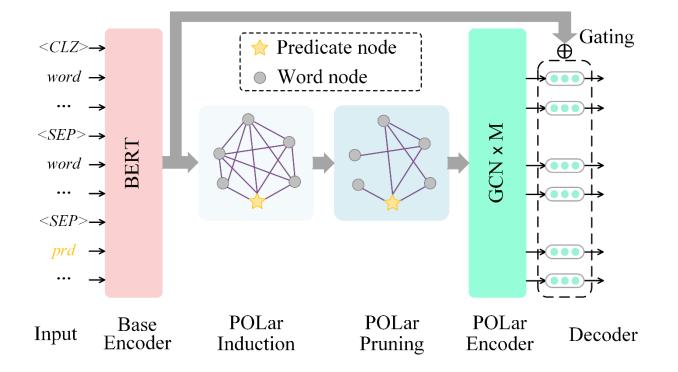
- Case-VII: Modeling discourse structure for dialogue-level NLP
 - Dialogue-level NLP challenges
 - Multi-party dialogue threads are scattered and entangled; There's a logical answering structure between utterances from different speakers (parties).
 - The speaker coreference ambiguity problem.
 - Dependency syntax is an effective feature for sentence; It is intractable to directly apply the syntax structure information for dialogue.

S1 Pheebs, can yo an engagement			,	
S2 Now, have you	told anyone else? 2	I S1	S2	S 3
S3 Hey Chandler you guys whisp				
S1 No, no one else you are my bes				
S2 It's nothing spe	i	4		
U	cial, Monica . (5)			
Argument Pair	Relation Type			3
<s1, monica=""></s1,>	Relation Type per:girl/boyfriend			3
<s1, monica=""> <monica, s1=""></monica,></s1,>	Relation Type per:girl/boyfriend per:girl/boyfriend	4		3
<s1, monica=""> <monica, s1=""> <chandler, s1=""></chandler,></monica,></s1,>	Relation Type per:girl/boyfriend per:girl/boyfriend per:alternate_names	4		3
<s1, monica=""> <monica, s1=""> <chandler, s1=""> <pheebs, s2=""></pheebs,></chandler,></monica,></s1,>	Relation Type per:girl/boyfriend per:girl/boyfriend per:alternate_names per:alternate_names	4	5	3
<s1, monica=""> <monica, s1=""> <chandler, s1=""> <pheebs, s2=""> <monica, s3=""></monica,></pheebs,></chandler,></monica,></s1,>	Relation Type per:girl/boyfriend per:girl/boyfriend per:alternate_names per:alternate_names per:alternate_names	4	5	3
<s1, monica=""> <monica, s1=""> <chandler, s1=""> <pheebs, s2=""></pheebs,></chandler,></monica,></s1,>	Relation Type per:girl/boyfriend per:girl/boyfriend per:alternate_names per:alternate_names	4	5	3

Figure 1: Left: dialogue-level relation extraction. Right: dialogueanswering structure.


[1] Hao Fei, Jingye Li, Shengqiong Wu, Chenliang Li, Donghong Ji, Fei Li. Global Inference with Explicit Syntactic and Discourse Structures for Dialogue-Level Relation Extraction. IJCAI. 2022

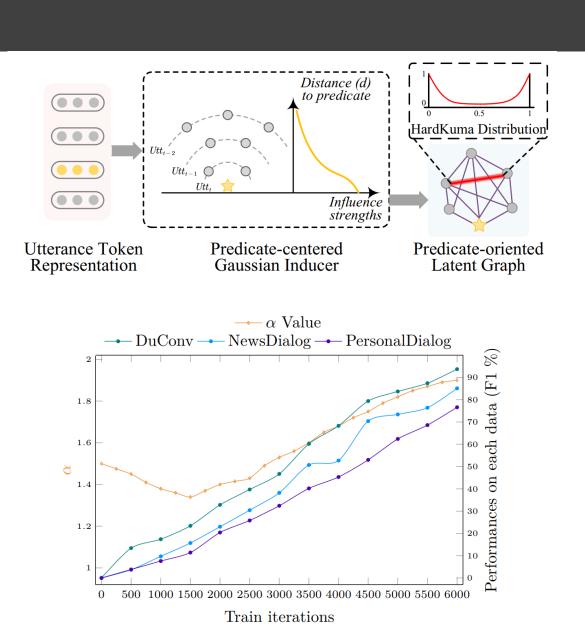
Case-VII: Modeling discourse structure for dialogue-level NLP


• Dialogue-level Mixed Dependency Graph

- Dialogue answering edge
- Speaker coreference edge
- Syntactic dependency edge
- Speaker-predicate edge

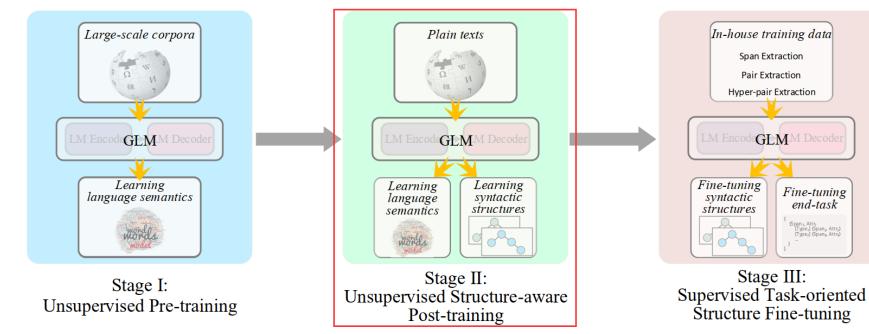
- Case-VIII: Modeling generic latent structure
 - Predicate-oriented latent graph
 - Automatically inducing latent graph structure for end task
 - Latent graph: **HardKuma** distribution theory

[1] Hao Fei, Shengqiong Wu, Meishan Zhang, Yafeng Ren, Donghong Ji. Conversational Semantic Role Labeling with Predicate-Oriented Latent Graph. IJCAI. 2022


- Case-VIII: Modeling generic latent structure
 - Predicate-oriented latent graph
 - Predicate-centered Gaussian Inducer:

• Dynamic Structural Pruning:

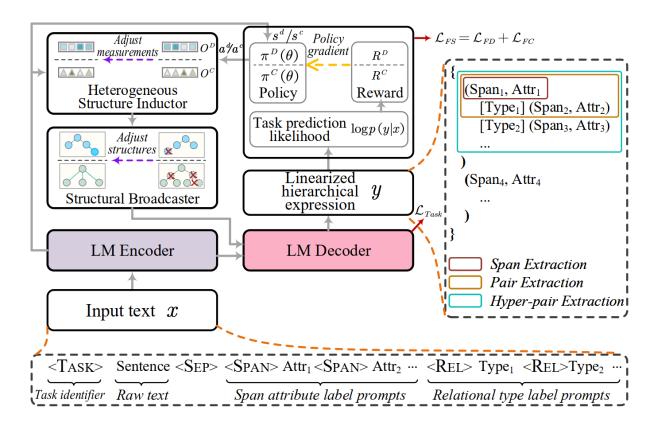
 $E = \alpha \operatorname{-Entrmax}(E),$


 α is a dynamic parameter controlling the sparsity.

- When $\alpha = 2$ the Entrmax becomes a **Sparsemax** mapping,
- while $\alpha = 1$ it degenerates into a **Softmax** mapping

- Case-VIII: Modeling generic latent structure
 - Latent Adaptive Structure-aware Generative Language Model (GLM) for UIE
 - three-stage training process: structure-aware post-training

[1] Hao Fei, etc. Unifying Information Extraction with Latent Adaptive Structure-aware Generative Language Model. NIPS2022. submitted.


- Case-VIII: Modeling generic latent structure
 - Latent Adaptive Structure-aware Generative Language Model (GLM) for UIE
 - Unsupervised structure-aware post-training
 - Dependency Dependency trees forest \mathcal{F}^{D} Dependency 1) Measuring constituency syntax with O⁶ $p_d(w_j|w_i)$ Heterogeneous structure structure induction GAT Rule Γ_D inductor High-order structure feature Constituency $p_c(C_k|w_i)$ structure induction Rule Γ_{C} GAT $O_{\leq 1}^{c} = \infty$ $O_{1}^{c} = 0$ $O_{2}^{c} = 4$ $O_{3}^{c} = 3$ $O_{4}^{c} = 2$ $O_{5}^{c} = 0$ $O_{6}^{c} = 2$ $O_{7}^{c} = 0$ $O_{\leq 7}^{c} = \infty$ Constituency Constituency \mathcal{F}^{C} forest \mathcal{F}^{C} $AAAO^{C}$ O^{1} Heterogeneous Add&Norm 🗲 Structural broadcaster Structural Broadcaster Structure Inductor $h^L \bigcirc \bigcirc$ 2) Measuring dependency syntax with O^{L} Multihead Attention LM Encoder 2^{nd} L^{th} u $\rightarrow \mathcal{L}_W$ Add&Norm $O_1^{d+}0.5 O_2^{d+}0.5 O_3^{d+}3.5 O_4^{d+}2.5 O_5^{d+}1.5 O_6^{d+}4.5 O_7^{d+}0.5 O_8^{d+}1.2$... 11 x'•• Trm $y \rightarrow Tr N$ 🔶 Trm 👓 Trm Masked Trm 11 Structural Broadcaster Multihead Attention 3) Example sentence My dog barks at the boy in red 11 LM Encoder LM Decoder Cross-attention (a) Unsupervised structure-aware post-training (b) Heterogeneous syntax measurements

 \mathcal{L}_{SDR}

- Case-VIII: Modeling generic latent structure
 - Latent Adaptive Structure-aware Generative Language Model (GLM) for UIE
 - Task-oriented Structure Fine-tuning

 ✓ narrowing the gaps between the *induced syntactic* and *task-specific* structures.

- Case-VIII: Modeling generic latent structure
 - Latent Adaptive Structure-aware Generative Language Model (GLM) for UIE

 Ω^D

Agreement rate(%)

- \blacktriangleright Less error on two crux of IE:
 - long-range dependence issue
 - *boundary identifying*
- Structural fine-tuning
 - Dynamically adjusting the learned structure information in accordance with the endtasks' need.

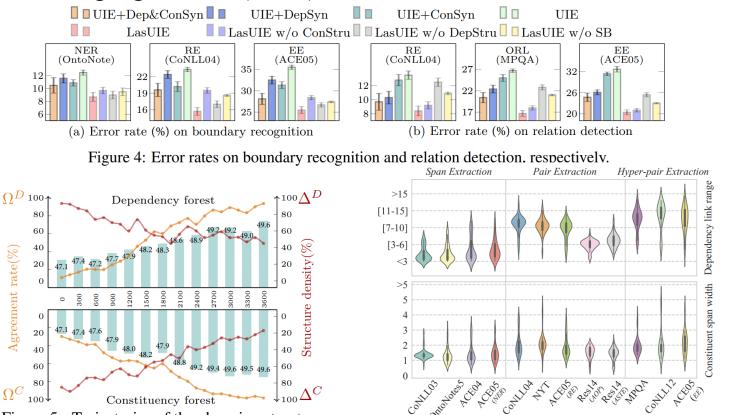


Figure 5: Trajectories of the changing structure agreement rates and densities during task-oriented structure fine-tuning, based on event extraction (ACE05). X-axis is the iteration steps for finetuning. Bars means the task performances (F1).

Figure 6: The distributions of the range of wordword dependency link (words) in forest \mathcal{F}^D and the constituency phrasal span width (words) in forest \mathcal{F}^C on each data.

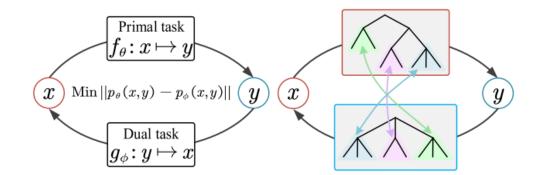
OUTLINE

Structure-aware NLP

- WHAT is syntactic structure?
- WHY integrating structures for NLP?
- HOW to integrate?
- WHAT to do next?

[Structure-aware NLP] What next?

- Summarizing
 - Syntactic structure information offers additional features for NLP semantic understanding from low-level linguistic bias.
 - Effectively modeling the syntactic structure knowledge helps further enhance the utility of structure integration for a wide range of NLP applications. [The focus of this talk]
 - Next, extending the idea of enhancing structural awareness to the applications in other domains besides NLP, i.e., Multimodality modeling.
 - Structure-aware Text-Image
 - Structure-aware Text-Video

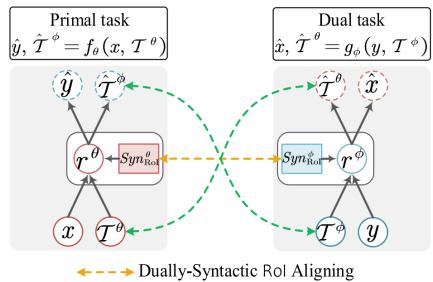


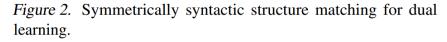
- Structure matching in dual learning
 - Dual Learning
 - Many NLP/CV/Multimodal tasks appear in dual form.
 - Neural machine translation: [Lan-A -> Lan-B] VS. [Lan-B -> Lan-A]
 - Paraphrase generation: [Target -> Source] VS. [Source -> Target]
 - [Text classification] VS. [Conditioned text generation]
 - Dual learning: modeling the **duality** between the *primal* and *dual* tasks, by minimizing the gap between joint distributions of the two tasks.
 - Existing Problem

Current dual learning scheme fails to explicitly model the *structural correspondence* in between.

[1] Hao Fei , Shengqiong Wu, Yafeng Ren, Meishan Zhang. Matching Structure for Dual Learning. ICML. 2022

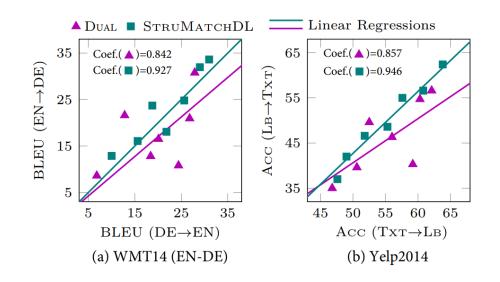
Duality Scheme	Direction	Representative Application(s)
Text↔Text	\longrightarrow or \longleftarrow	Neural Machine Translation, Paraphrase Generation
Taxt	\rightarrow	Text-to-Image Synthesis
Text↔Image	$\leftarrow -$	Image Captioning
Text↔Label	\rightarrow	Text Classification
Text⇔Label	\leftarrow	Conditioned Text Generation
Image \leftrightarrow Label \leftarrow	\rightarrow	Image Classification
	\leftarrow	Conditioned Image Generation
Image↔Image	\longrightarrow or \longleftarrow	Image Translation

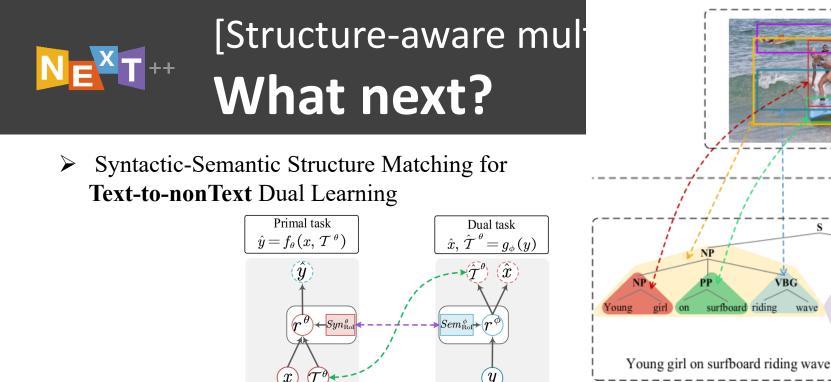

Figure 1. Left: dual learning framework. **Right**: dual learning with alignment of structural supervision.

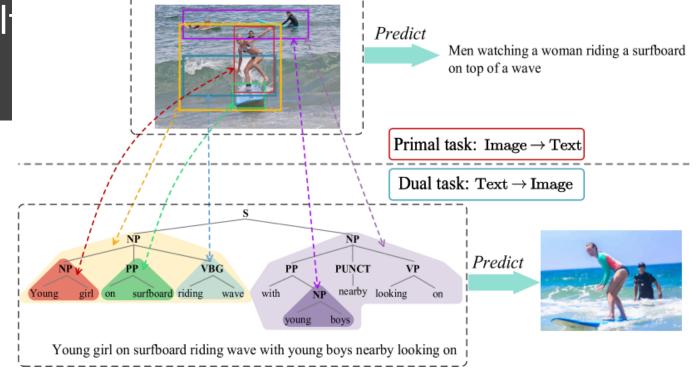

[Structure-aware multimodal]

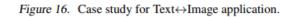
What next?

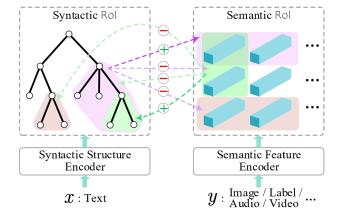
- Structure matching in dual learning
 - Dually-Syntactic Structure Matching for Text-to-Text Dual Learning

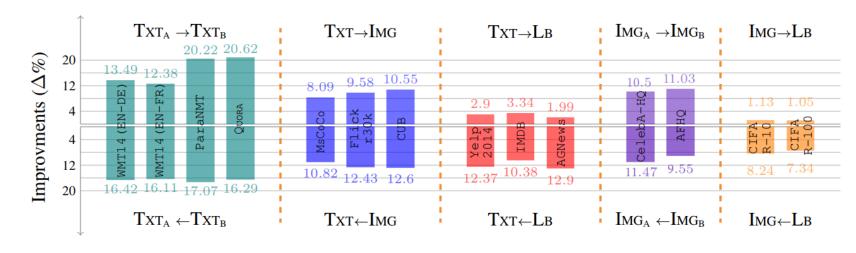


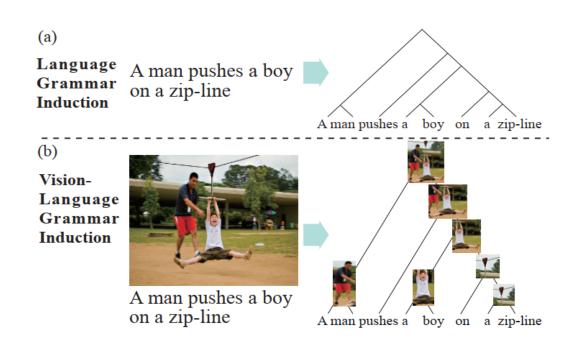

← – – → Structural Cross-Reconstruction


		WMT14 (EN-DE)			WMT14 (EN-FR)				
		EN-	→DE	EN∢	–DE	EN-	→FR	EN∢	–FR
• Baseline	B1	28.04	/	30.91	/	39.44	/	35.32	/
	B2	28.22	/	30.72	/	39.68	/	35.90	/
	B3	28.57	/	31.00	/	39.80	/	35.85	/
	M1	16.24	/	20.69	/	29.92	/	27.49	/
• Sealsea based	M2	17.06	+0.82	21.62	+0.93	31.15	+1.23	28.82	+1.33
• Seq2seq-based -	<u>M</u> 3	$1\bar{6}.8\bar{1}$	/	20.81	/	31.99	/	28.35	/
	M4	19.52	+2.71	23.24	+2.43	35.85	+3.86	31.27	+1.92
	M1	25.24	/	28.42	/	37.21	/	32.08	/
	M2	27.07	+1.83	29.84	+1.42	38.73	+1.52	33.95	+1.87
	<u>M</u> 3	$2\bar{6}.\bar{46}$	/	29.17	/	38.10	/	32.52	/
• Transformer-based	M4(rank)	29.71	+3.25	33.40	+ 4.23	42.28	+4.18	37.09	+4.57
• Transformer-basea N	M4(CL)	30.03	+3.57	33.96	+4.79	42.82	+4.72	37.76	+5.24
	O NLY S YN	27.90	+1.44	30.81	+1.64	39.03	+0.93	34.60	+2.08
	-SALN	28.23	+1.77	31.15	+1.98	39.55	+1.45	35.07	+2.55
	-SyRec	29.56	+3.10	32.68	+3.51	41.17	+3.07	36.34	+3.82


Table 1. Results (BLEU scores) on NMT. Two colors indicate the coupled tasks, respectively. Color depth highlights the significances of the results improvements. '+' means the improvement over the counterpart without using structure knowledge (e.g., M2-M1, M4-M3).

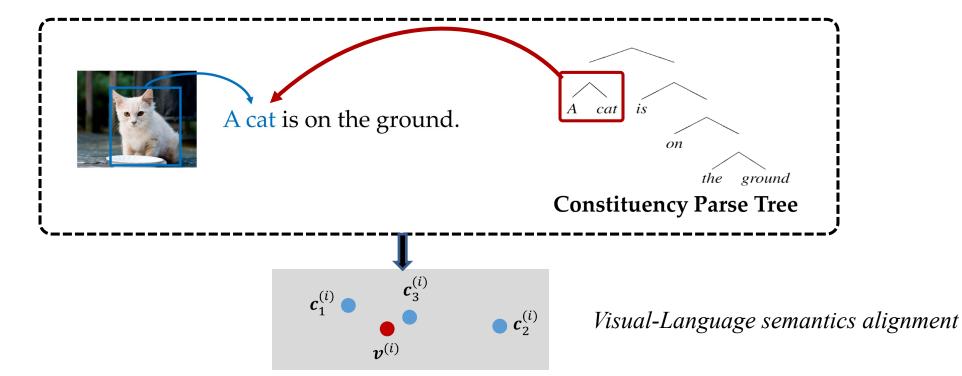





Figure 4. Syntactic-semantic RoI alignment via contrastive representation learning.

- On-Going work-I: Unsupervised vision-language grammar induction
 - Two main challenges

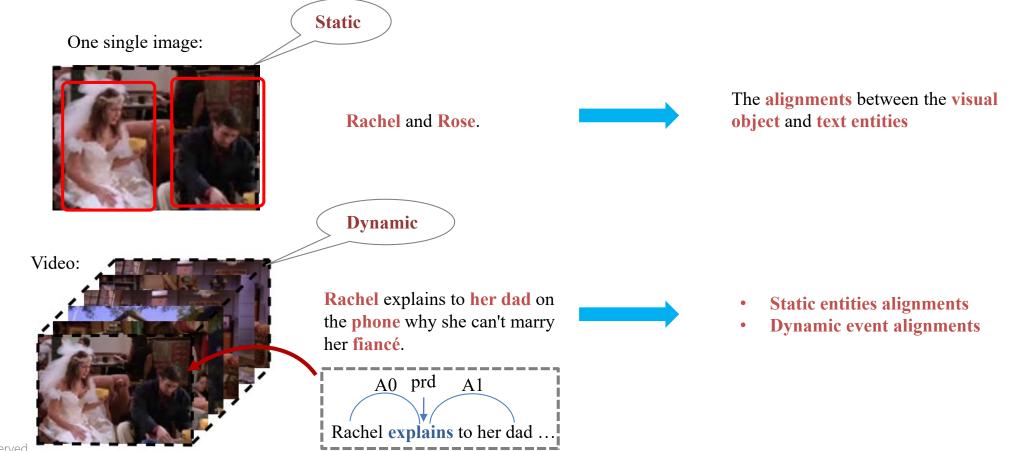
- Context-dependent semantic representation learning.
- Fine-grained vision-language alignment for all levels of the hierarchical structure.


Pre-training multimodal language model via unsupervised learning



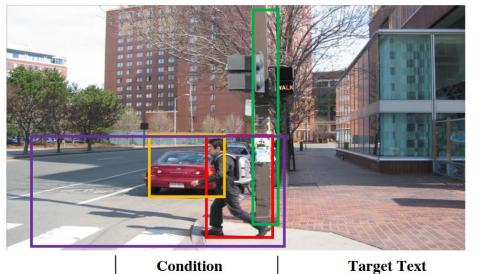
> On-Going work-II: Deep Text-Image structure alignment

- Image side: scene graph/objective proposals
- Text side: constituency-dependency structure


> Improving the explainability of the multi-modal system

> On-Going work-III: Deep Text-Video structure alignment

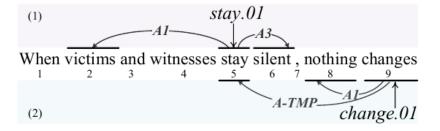
- Video side: event proposals?
- Text side: event/semantic structure



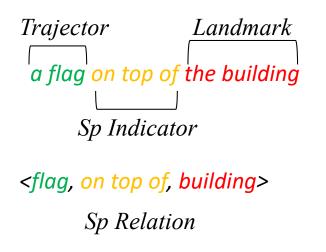
© Copyright NExT++. All Right Reserved.

- > On-Going work-IV: Multimodal spatial semantics understanding
 - Spatial relation detection/Visual spatial description

- Given an image and two objects inside it,
 VSD produces one description focusing on the spatial perspective between the two objects.
- Created benchmark datasets:
 - 30K images;
 - 100K sentences.



	Condition	Target Text
Image Captioning		A man is walking past a car A
SRL-based Captioning	walk; <arg>, <loc></loc></arg>	man is walking cross a street
Visual Question Answering	What color is the car?	The car is red
Our Work: VSD	<man, car=""></man,>	A man is walking behind a red car.
	<car, pole=""></car,>	A red car is parked to the left of a pole.


- On-Going work-V: Multimodal semantic role labeling
 - Semantic role labeling (SRL)

'who did what to whom, when and where'

• Multimodal semantic role labeling/Spatial Role Labeling

SemEval-2015 Task 8

[Arriving_{m1}] [in_{ms1}] the [town of Juanjui_{pl1}], near the [park_{pl2}], [I_{se1}] learned that my map had lied to me.

```
<MOTION id=m1 extent="Arriving" motion type=PATH motion class=REACH
motion sense=LITERAL>
<MOTION SIGNAL id=ms1 extent="in" motion signal type=PATH>
<PLACE id=pl1 extent="town of Juanjui" form=NAM countable=TRUE
dimensionality=AREA>
<PLACE id=pl2 extent="park" form=NAM countable=TRUE dimensionality=AREA>
<SPATIAL ENTITY id=se1 extent="1" form=NOM countable=TRUE
dimensionality=VOLUME>
<MOVELINK id=mvl1 trigger=m1 goal=pl1 mover=se1 goal reached=TRUE motion
signallD=ms1>
```


Structure awareness has more potential...

© Copyright NExT++. All Right Reserved.

Thank You!

Q&A

© Copyright NExT++. All Right Reserved.